
NASA Contractor Report 187528

ICASE Report No. 91-19

ICASE
_T

DOMAIN DECOMPOSITION WITH LOCAL
MESH REFINEMENT

William D. Gropp
David E. Keyes

Contract No. NAS1-18605

February 1991

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, V'trginia 23665-5225

Operated by the Universities Space Research Association

.........  ASA
National Aeronautic,_ and
Space Administration

Langley Research Center
_ .... Hamplon, Virginia 2366S:5225==

i,-

= (NASA-CR-1S7528) DOMAIN
= L?CAL MESH REFINEMENT
@

= 33 p

DLCOMPOSITION WITH

_ina] Report (ICASF)
CSCL 12A

G3/64

N_I-25704

Unclas

0020318



r



DOMAIN DECOMPOSITION WITH LOCAL
MESH REFINEMENT 1

William D. Gropp 2

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

and

David E. Keyes s

Department of Mechanical Engineering

Yale University

New Haven, CT 06520

ABSTRACT

We describe a preconditioned Krylov iterative algorithm based on domain decomposition

for linear systems arising from implicit finite-difference or finite-element discretizations of

partial differential equation problems requiring local mesh refinement. To keep data struc-

tures as simple as possible for parallel computing applications, we define the fundamental

computational unit in the algorithm as a subregion of the domain spanned by a locally uni-

form tensor-product grid, called a tile. In the tile-based domain decomposition approach,

two levels of discretization are considered at each point of the domain: a global coarse grid

defined by tile vertices only, and a local fine grid where the degree of resolution can vary from

tile to tile. One global level and one local level provide the flexibility required to adaptively

discretize a diverse collection of problems on irregular regions and solve them at convergence

rates that deteriorate only logarithmically in the finest mesh parameter, with the coarse

tessellation held fixed. A logarithmic departure from optimality seems to be a reasonable

compromise for the simplicity of the composite grid data structure and concomitant regular

data exchange patterns in a multiprocessor environment. We report some experiments with

up to 1024 tiles, comment on the evolution of the algorithm, and contrast it with optimal

nonrefining two-level algorithms and optimal refining multilevel algorithms. Computational

comparisons with some other popular methods are presented.

1Major revision of Yale University Department of Computer Science Research Report 726, August 1989
version.

2The work of this author was supported in part by the Applied Mathematical Sciences subprogram of the

Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the Office of
Naval Research under Contract N00014-86-K-0310, and by the NationM Science Foundation under Contract
DCR 8521451.

SThe work of this author was supported in part by the National Science Foundation under Contracts
EET-8707109 and ECS-8957475 and by the National Aeronautics and Space Administration under NASA

Contract NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



±

Z



1. Introduction

The combination of domain decomposition with preconditioned iterative methods provides a

framework that extends the usefulness of numerical techniques for certain special partial differential

equation (PDE) problems to those of more general structure. Nonsmooth features, nonseparable

geometries, or massive sizes of practical problems limit the application of many "standard" numer-
ical techniques. Direct methods are rapidly defeated by problem size. "Fast" methods which take

advantage of special coefficient and grid structure often do not apply globally. Iterative methods
often depend for efficient implementation on regular grids that, if global in extent, are inconsistent

with accurate and economical resolution of the physics of the problem. However, the domains of

problems with these features can often be decomposed into smaller subdomains of simpler struc-

ture, increasing the utility of extant software libraries, particularly as components of precondition-

ers. Moreover, the domain decomposition can be made to produce a convenient mapping of many

problems onto medium-scale parallel computers. Our primary focus in this paper is the incorpo-

ration of spatially varying mesh refinement requirements into a domain decomposition algorithm

based on finite differences. We illustrate the convergence behavior of the algorithm on a variety of

two-dimensional elliptic PDE problems,

£u = f on 12, with au + bun = g on dg/, (1.1)

including non-selfadjoint, nonseparable geometry cases. We also point out features of the method

that are relevant to a parallel implementation. We defer most discussion that would be distinctly

archltecture- and performance-related to a companion paper [25].

Many PDE problems that are "large" in the discrete sense are so because the continuous

problems from which they are generated require resolution of several different length scales for the

production of a meaningful solution. The value of compromising between the extremes of globally

uniform refinement (which leads to simple and usually vectorizable algorithms but wastes time and

memory) and pointwise adaptive refinement (which minimizes the discrete problem size for a given

accuracy requirement but leads to complicated data structures) has been recognized for some time
and described in contexts too numerous to acknowledge fairly. Locally Uniform Mesh Refinement

(LUMR) characterizes one such class of discretizations, based on composites of highly structured

subgrids. Many treatments of LUMR in the literature pertain to explicit methods for transient

problems, a class with its own advantages (see [3] and references therein) and limitations [44]

which is somewhat distinct from ours. Implicit treatments of locally regular refinement for elliptic

problems include approaches arising out of classical multigrid ([7]; see [36] for a concise state-

of-the-art treatment), a nonconforming spectral technique [34], and methods rooted in iterative

substructuring for finite element problems [5, 15].

Computationally practical locally uniform grids are usually expressible as the union of a coarse

uniform tensor-product grid covering the entire domain with one or more refined tensor-product

grids defined over subregions, including the possibility of multiple, nested levels. Generalizations
of these grids within the LUMR framework include allowing the grids at any particular level of

refinement to themselves be the union of tensor-product subgrids, and reinterpreting "uniform" as
"quasi-uniform" to allow general curvilinear coordinates for custom body- or solution-fitting. Few

parallel implementations of schemes of this generality have been reported thus far. Selected for

consideration here is a structurally restricted form of LUMR in which refinement occurs exclusively

within complete cells of a quasi-unlform coarse grid, as described in Section 3 below.

The goal of the present contribution is an LUMR methodology with starkly simple data struc-

tures for efficient portability to a variety of parallel machines. Current implementations on two

distributed- and twoshared-memory parallel machines share approximately 98% common code

measured by line count, inclusive of comments, exclusive of standard libraries. The methodology



borrowsfromthemeshrefinementanddomaindecompositionliteratureandfrom theauthors'own
experiencein theseareasandin parallelcomputation[22,23,32]. Theserialarithmeticcomplexity
bowssomewhatto modularity,portability, andoverallparallelperformance,in whichwe include
both efficiencyand total executiontime. For example,by refiningonly in unitsof full coarse-grid
cells,weoften imposea tendency towards refinement in subregions where it would be unnecessary

from the viewpoint of truncation error alone. As another example, the convergence rate of many

domain decomposition algorithms is mildly dependent upon a coarse-grid resolution which may be

chosen with criteria beyond convergence rate, such as the balance of work among multiple pro-

cessors. Our algorithm therefore does not scale (with constant problem size) to indefinitely large

numbers of processors, but it does sit comfortably on today's MIMD supercomputers. We comment

in the final section about a hybridized two-level algorithm suitable for massive parallelism on an
MIMD cluster of SIMD subclusters.

Prior to the discussion of LUMR, Section 2 describes a domain decomposition algorithm em-

ploying "nearly" parallel preconditioners in conjunction with generalized minimal residual (GM-

RES) iteration, a nonstationary method not dependent upon operator symmetry. In two dimen-

sions, the preconditioner involves three phases: a global coarse grid solve, independent solves along
interfaces between subdomains, and independent solves in the subdomain interiors. The global

coarse-grid solve is an essential feature, as it provides the only global exchange of information in

the preconditioner itself. We introduce a simple "tangential" operator preconditioning for the sub-
domain interfaces that is preferable to the interface probe preconditioning advocated in our earlier

work on convective-diffusive systems with stripwise decompositions [31]. We also prefer exact sub-

domain solves to incomplete factorizatlons. These "exact solves" can be performed by multigrid

if the subdomains become too large for direct methods. For multicomponent problems in which

source terms codominate with convection and diffusion, block incomplete factorization may also be

an economical subdomain solver.

The main body of the paper (Section 4) is the collection of numerical experiments on two-
dimensional elliptic boundary value problems (BVPs). The experiments include reentrant domains,

non-selfadjoint operators, and mixed boundary conditions. Up to 1,024 coarse-grld elements, called
tiles, are Used: The last two subsections of Section 4 compare the boxwise decompositions used

throughout the paper with stripwlse decompositions exploiting physical anlsotropies, as well as
with some conventional undecomposed solvers.

Section 5 indicates some future directions for this methodology.

2. An Iteratlve Domain Decomposition Alg0r[thrn _

Preconditioned iterative methods and domain decomposition provide a framework that includes

a wide class of algorithms. This framework comprises four elements:

1. a global operator arising from the discretization of the PDE (or system of PDEs);

2. an approximate inverse, or preconditioner, for the global operator;

3. an iterative method requiring only the application of the preconditioned operator; and

4. a geometry-based partition of the discrete unknowns so that size, locality, and uniformity can
be exploited in forming the action of the preconditioned operator.

Since the numerical analysis literature contains many successful discretization schemes and iterative

methods specialized for different operator properties, such as the presence or absence of definite-

ness and symmetry, the recent burgeoning effort in iterative domain decomposition algorithms has

concentrated primarily (though not exclusively) on the interaction of the second and fourth of these
elements. In the parallel context, this is a natural preoccupation because the bottleneck to paral-

lelism usually (though not exclusively) lies in the requirement of the global transport of information

in the preconditioner.



Subsection2.1 establishesblock matrix notationcorrespondingto the decompositionof the
domain.Therest of Section2 suppliesdetail important to specialistsandto implementorsof the
algorithm,but canbepassedoverin a casualreading.

2.1. Iteratlve Methods and Operator Structure

Many of the numerical examples described in Section 4 rule out the use of iterative methods

based on symmetry but permit the assumptions of definiteness and diagonal dominance. In partic-
ular, full or incomplete factorizations of preconditioner matrix blocks can be undertaken without

pivoting. Because of its robustness, we adopt the parameter-free generalized minimal residual

(GMRES) method [42] as the outer iteration. The main disadvantages of GMRES, its linear and

quadratic (in iteration index) memory and execution time requirements, respectively, must be mit-

igated by scaling and preconditioning. For other acceleration schemes, such as Chebyshev, the
memory and execution time requirements may be only constant and linear, respectively; however,

GMRES dispenses with the difficulty of estimating parameters. The recently proposed, parameter-

free, bounded recursion BI-CGSTAB method [45] combines the above-mentioned advantages and

deserves further study. In preliminary tests we have found it usually to be competitive in execution

time with GMRES, but it can in some instances be substantially slower. Other methods for the

iterative solution of nonsymmetric systems, such as QMR [20], also deserve broader investigation.

In solving Au = b each of these methods requires an initial iterate for x that it improves through

repeated calls to a routine forming the product of A with a direction vector. For improved conver-

gence we employ a change of variables, iteratively solving (AB-1)y = b for y and then Bx = y for

x. Here, B is a right preconditioner matrix, whose inverse action should be convenient to compute
and should cluster the eigenvalues of AB -1. A arises from an FD, FE, or FV discretization, with

a local stencil. The stencil is regarded as uniform in this section and generalized in Section 3.
The type of domain decomposition used here involves unit aspect ratio subdomains, as opposed

to thin strips joining opposite sides of a domain; therefore, interior subdomain vertices are created.

We denote all subdomaln vertices "cross points" but distinguish between interior and boundary

cross points. Ordering the interior points as well as the physical boundary points other than cross

points first, the interfaces connecting the cross points plus the cross points on the boundary next,

and the interior cross points last imposes the following outer tripartition on the global discrete

operator A:

AI AIB Alc )
A =_ ABI AB ABO • (2.1)

\ Act Acs Ac

Note that the partitions vary greatly in size. If H is a quasi-uniform subdomain diameter and h a
quasi-uniform fine mesh width, the discrete dimensions of AI, AB, and Ac are O(h-2), O(H-lh -t),

and O(H-2), respectively. The numerical experiments described below employ a five-point stencil,

(extended in [33] to second-order upwind differencing with a skew six- or seven-point stencil). No

cross-derivative terms appear; therefore, there are no corner points in the stencil, and blocks AIc

and AcI may be set to zero.

The outer structure of our preconditioner B may be a conformally partitioned block upper

triangular matrix:

( _I _IB _IC )
B = 0 BB ABe , (2.2)

0 0 Be

whose components are elucidated in the next subsection. The application of B -1 to a vector

v = (vi, re, re) T consists of solving Bw = v for w = (wl, wB, we) T. It begins with a cross-point
solve with Bc for wc. This updates through .4BC the right-hand sides of a set of independent



interfacesolvesfor subvectors of WB. These, in turn, update the right-hand sides through fi,1B of a
set of independent interior solves for subvectors of wt. For a stencil with corner points, ,41c would

be nonzero, and the cross-point result would also update the interior block right-hand sides. Within

the preconditioner, however, there is no dependence of the interface solution upon the result of the

interior solution, or of the cross-point solution upon either. This fact distinguishes the method

from [6] and [9] and means that the O(h-2)-sized block of the preconditioner is visited only once
per iteration.

A useful optimization is available when the tilde quantities in the top row are taken equal to

their tilde-free counterparts. In this case, it is readily verified that the right-preconditioned form
of the operator is

I 0 0 )
AB -1 = AB_A-[ 1 (As - ABIA-[1Am)B_ 1 (I- (AB - AsIA-[1Axs)B_I)ABcB_I . (2.3)

0 AcBB[_ 1 (Ac - AcBB[_ 1ABe)Be 1

The identity block row means that O(h -_) of the unknowns in the Krylov vectors can go untouched

(except for Scaling) throughout the entire solution process until the preconditioning is unwound in

the final step, after the interface and cross-point values have converged. Since A} -1 is needed to
advance the solution on these separator sets, we cannot escape solving subdomain problems, but
substantial arithmetic work can be saved.

2.2. Components of the Preconditioner

The derivation of the coefficients of the preconditioner blocks is as follows. The cross-point op-
erator Bc is simply an H-scale coarse-grld discretization of the continuous PDE. To accommodate

Neumann or Robin boundary conditions, we include physical boundary points lying at subdomain

vertices in the cross-point system in this step. (Later the boundary cross-point values are overwrit-
ten with the results of more accurate h-scale data from the interface solve. This distinction is, of

course, moot for Dirichlet data but important for boundary conditions involving spatial gradients.)
The cross-point system right-hand side at interior points can be taken as the injected vertex values

of the fine-grid right-hand side, though we remark on a better choice below. The current imple-

mentation supports a direct solve on the coarse-grid system. If strip decompositions are used, there

is no cross-point system, and the lower-right block of the preconditioner is simply the interface

system described next.

Unlike the coarse-grid and subdomain interior problems, which possess the full physical dimen-

sion of the domain of the underlying PDE and thus inherit a literature full of preconditionings, the

lower-dimensional interracial equations are properly derived from a pseudo-differential trace opera-

tor. A theoretically well developed approach for preconditioning the interfaces has been developed

for the non-selfadjoint case in a setting requiring two sets of subdomain solves per iteration [9],

but we have experimented insteaxt with three approaches referred to as tangential, truncated, and
interface probe. The tangential interface preconditioner is the one-dimensional discretization of the

terms of the underlying operator that remain when the derivatives normal to the interface are set

to zero. It is equivalent to solving a two-point BVP with boundary conditions inherited from the

interior cross-point values or from the physical boundary. The truncated interface preconditioner is

a discretization of the full underlying operator, with the coefficients associated with noninterfacial

unknowns set to zero. The interface probe preconditioner has been described elsewhere [10, 12,

31] as a low-bandwidth approximation to the true capacitance matrix of the interracial unknowns

in the ambient matrix corresponding to the degrees of freedom of the interface itself and the two

subdomain interiors on either side. For all of the results in this paper, the tangential preconditioner

is used because it performed better than the others on average in our tests, as described in more

detail in [24].

=



The subdomaln interior equations consist of approximate fine-grld discretizations of the PDE

over local regions, with physically appropriate boundary conditions along any true boundary seg-

ments and Dirichlet boundary conditions derived from the already-available WB at artificial inter-

faces. Only first-order interior differences are accommodated in the physical boundary conditions

of the preconditioner, though first- or second-order boundary conditions may be elected in the

operator A. The current implementation supports full LU Gaussian elimination with both banded

and sparse data structures, fast cyclic reduction, incomplete LU decomposition, and modified in-
complete LU decomposition. To maintain a reasonable scope, we concentrate on full elimination

results here. Full elimination on the interiors yields the best iteration counts, though not always

the best execution times (for large H/h). Like the interface solves, each subdomain interior solve
may be performed independently.

2.2.1. A Better Variant of the Cross-Point System
In keeping with an exposition that is as independent as possible of particular dlscretization

techniques, the right-hand side of the cross-point system was assumed above to be the injected

vertex values of the fine grid weighted by the subdomain areas instead of the grld-cell areas. It is

necessary, however, to rely on a finite element discretization with a hierarchical basis to properly

motivate the construction of a better cross-polnt system. In particular, we have obtained faster

convergence by using the function space decomposition approach of [6], which yields essentially the

same coefficient block Bv but replaces the simple injection of fine-grid values with ramp-weighted

averages of interface values along all interfaces feeding a given cross point. Specifically, the element

of the right-hand side ve corresponding to an interior subdomain vertex is a discrete approximation

to one-quarter of the sum of four llne integrals of the form

2//--ff v(s) 1--_ ds, (2.4)

where s parameterizes the interfaces leading from the vertex in question. This leads to the following

sequence of steps to produce a preconditioned matrix vector product u from input v, where v =

( Vl , VB, vc )T:

First, vc is reweighted according to (2.4).
v' = Cv, where

(,0C= 0 I
0 K

The reweighting has the matrix representation

J is diagonal with all positive elements, all elements of K are nonnegative, and the row sums of

K and J together give unity. Then, as above, we solve for w = B-1C and multiply by A to get

u = Aw. Thus, the preconditioned matrix vector product is u = AB-1Cv. Treating everything

apart from A itself as the effective preconditioner Q, we find that Q-1 = B-1C, or equivalently,

Q = C-tB. C -1 is straightforwardly seen to be

O--1-- (! o o)I 0 ,
_j-1K j-1

so that

Q

Ax
0

0

AIB

BB

-J-1KBB

.4,c
Asc ,_ •

J- (Bc- KABc) /



.... O" • "0" • "0 ....

.... O" • "0" • "0 ....

.... O- • "0 • • "0 ....

.... O" - -O- • "O ....
OOOO00000OO00OO00
.... O" • "O" • .O ....
.... O" • .13- • "O ....
.... 0 ° • "0- • .O ....
OOOOOOOOOOrnnooooo
.... O" • "0" • -o ....
.... O. • "0" • "0 ....
.... O. • .O- • .O ....
OOOOOOOOOOOOOOOOO
.... O. • .O. • .0 ....
.... O. • .O. • .D ....
.... O- • -0- • .O ....
.... O...0. • .n ....

F|gure 1: A sample partition of the unknown vector u into

uc (circles), uB (squares), and ul (dots) for a 4 x 4 decom-

position of a square into tiles.

When tilde-free quantities are used in the first block row, AQ -1 has a first block row equal to the

identity. Thus, the remark following equation (2.3) about not touching the upper portion of the

Krylov vectors, except for scaling, remains valid. Though the preconditioner with ramp weighting

of the right-hand side of the cross-polnt system is no longer strictly block triangular, it still requires

only one solve with At per iteration.

2.2.2. A Simple Example of an (A, B) Pair

An example may be the most effective way to indicate how AB -I is applied to a vector, this
being the central action in any preconditioned iterative method for a finite local discretization of

(1.1). For simplicity, consider £ as the negative of the Laplacian, b = g = 0, and _ as the unit

square partitioned uniformly into 4 × 4 subdomains of 4 × 4 cells each (i.e., h = 1/16 and H = 1/4),

and employ second-order finite differences. (We emphasize that for selfadjoint and/or constant

coefficient problems such as this, several better techniques exist than the one now illustrated.)

As shown in Figure 1, there are 172 degrees of freedom, including 32 interior crosspoints in uc,

24 × 3 interior interface points in ua, and 16 × 32 regular interior points in uz. Of the remaining

64 boundary points, the 12 attached to interfaces are grouped with us, and the balance with ut.

The matrix A is a simple permutation of pent{-1... - 1 4 - 1...- 1}, except that boundary

rows are replaced with corresponding identity rows. The right-hand side is the corresponding

permutation of h2flj, again with boundary conditions imposed in the appropriate rows. The block

Bc is pent{-1...- 1 4 - 1...- 1}. BB is block diagonal with 24 copies of tri{-1 2 - 1}, some

augmented with boundary identity rows. /IBc' is the corresponding block of A, and the entire

interior row set is that of A. Before B -1 is applied to a vector v, the components vc are replaced

with the interface averages described above and scaled by H _. Following the block triangular

backsolve with (2.2), a simple matrix-vector multiply is done with (2.1).

2.3. Parallelism in the Preconditioner

We note that the permutation into block matrix form described in this section is a purely

formal one for notational convenience. The data structure used in a computer implementation is

a local natural ordering of gridpoints within a natural ordering of tiles, as detailed in Section 3
below. The parallelism within AI and BB is not visible at the level of blocking in (2.2), but the

parallel bottleneck represented by communication-intensive Bc and the sequential use of that result

in multiplications with ABe (and, generally, ,4Ic) blocks is evident. We mention variants of the

algorithm that alleviate this bottleneck at the price of some extra local work and extra storage.

The solve with Be itself can be performed in any of three ways: redundantly on each proces-

sor after broadcasting the required coefficient data, with single-threaded code between collecting



tile coefficientsona singleprocessorandredistributingthe results,or in a fully (or partially) dis-
tributed fashion. Determinationof the most efficienttechniqueis generallydecomposition-and
network-dependent,sinceproblemsizeandcomputation-to-communicationratiosenter the com-
plexity estimatein nonisolableways.Someglobaldataexchangeis necessaryin this phase,soit
maybedesirableto preventidling on a given multiprocessor to allow the remalning local exchange

ph_es to proceed before the cross-point results are available.
The sequentiality of the cross-point solve can be broken by the following technique, which

exploits the relatively small size of the cross-point system. Lumping the balance of the unknowns

together, let (2.2) be condensed to

B= ( Bh Bait)0 BH '

where Bh contains the upper 2 × 2 blocks of (2.2), and BIt is just another name for Be. Consider
the application of the preconditioner

wtf vii

with the sequential solution

wtt= B_I 1VH,

Wh "- B;I(vh -- BhHWH).

A preprocessing step can compute and store the vectors gk = (B-hl)(BhH)e_, k = 1,..., K, where
there are K interior cross points and ek is the k th unit vector in this K-dimensional space. Once

WH = B_t 1vH and W{h1) = Bh I vh are independently solved for, we can (through local computations)

form Wh = w(hI) -- _J'_k(w11)kgk. By construction, the support of each 9k is limited to the four tiles

sharing vertex k, and the cross points possess a four-coloring that allows the gk to be computed

in just four sets of independent subdomain solves (for a scalar PDE). This process was inspired

by, and has an interpretation in terms of, function space decompositions. Indeed, the function

space framework is critical in generalizations to multilevel preconditioners, but for a two-level

preconditioner the algebraic description above is sufficient.

3. Mesh Refinement by Tiles

This section describes a simple mesh refinement philosophy based on a regular tessellation of

two-dimensional domains into subdomain "tiles." A tile is a tensor-product of half-open intervals

in each coordinate direction, except that a tile abutting a physical boundary along what would

ordinarily be one of its open edges is closed along that edge. Each tile possesses its own interior,
at least two of its four sides, and at least one of its four corners and is locally discretized on a

tensor-product grid. Although the specific convention is arbitrary, we assume for definiteness that

in its own local right-handed coordinate system, each tile contains its origin and its z and y axes

(see Figure 2).

We require that the cross points be embeddable in a tensor-product global quasi-unlform

coarse grid, from which only points lying exterior to the (possibly multlply-connected) boundary

are missing. Irregular tiling patterns such as in Figure 3b are ruled out for convenience in setting

up the coarse grid system and keeping the code that manages the interracial data exchanges short.

Itowever, there is no requirement that the domain itself be of tensor-product type; the decompo-

sition in Figure 3a is permissible. Without coordinate stretching and other body-fitted coordinate

transformations, the embedding requirement would generally enslave the granularity of the de-

composition to the geometric complexity of the domain, a situation that we wish to avoid since



j°° ....... , ............. ,...

C) C
Figure 2- The anatomy of a tile. Unless closed by a physical

boundary, a tile is open along its high-z and high-?/perimeter.

(a) (b)

Figure 3: Sample tessellations: (a) is permissible, (b) is not.

granularity has important implications on load balance and convergence rate. Though we have yet

to fully implement them, domain-wide coordinate transformations represent a simple extension in

principle. From an algebraic point of view, an orthogonal body-fitted coordinate transformation is

indistiguishable from a perturbation to the operator coefficients. Preserving orthogonality should

create less of a strain on a mesh generator acting over locaI regions than it does in much current

practice using global mappings.
Associated with each tile is the data defined over a quasi-uniform grid covering its portion of

the domain and a set of operators for executing its block-row portions of the preconditioner solve,

as described in Section 2. In our object-oriented approach, these operators can vary widely from

tile to tile. In our present examples, however, we assume that the grids covering individual tiles

share a common parent uniform tile (of arbitrary discrete size) and are refined only in powers of 2.

We can therefore later indicate refinement levels using the graphical shorthand of Figure 12 where

the integer indicates the logarithm of the refinement ratio.

3.1. Tile'Tile _rnterf-aces - --

To minimize restrictions on the structure of adjacent tiles (and to eliminate redundant com-

munication between tiles in a multiprocessor implementation in which different tiles will generally

be assigned to different processors), each tile stores and maintains, in addition to its own data,

the data associated with a buffer region of phantom points equal in width to one-hMf of that of

its associated discrete stencil. Figure 4 illustrates the buffer unknowns for a five-point stencil,

superimposed on Figure 2. With the exception of these redundant phantom points, each point of

the domain is uniquely associated with a single tire.

8



I I I I I :

I I I I I

I I I I I

I I I I I

Figure 4: Sample tile, showing the computational buffer re-

gion (dashed extensions) required for the completion of stan-

dard five-point stencils centered at the points of the local

grid.

Data at the phantom points is supplied in a manner dependent upon the internal structure and
refinement ratios of the associated adjacent tiles. A finer tile obtains biquadratically interpolated

data from its coarser neighbor. Since the problems studied here involve second-order operators,

this allows the use of conventional finite-difference techniques in generating the difference equations

at the subdomain interfaces. (Bilinear interpolation alone would limit the potential accuracy of

a second-order differencing scheme, as observed in some preliminary experiments.) A coarser tile

obtains its data by simple (unweighted) injection. That is, the value at the point in the finer
neighboring tile that lies on the extended coarser tile stencil is scaled appropriately and used in the

coarser grid.

We note that such a simple scheme neither guarantees discrete flux conservation nor delivers
a symmetric A for a selfadjoint £. However, the algebraic method does not depend on either

property. The focus of this paper is on the solution of a consistent set of discrete equations. More

careful attention to the conservation properties of the discretization has been given in the context

of locally regular refinement in [18] and [36], for instance.

Each iteration of GMRES requires multiplying with A, which involves at most nearest-neighbor

data exchanges between tiles to complete the local stencils, and solving with B, which likewise

requires only nearest-neighbor data exchanges to form right-hand sides, apart from the globally

cooperative task of solving with Be.

The selection of refinement criteria is a much-studied, yet still open problem; see [29] and

the collections [1, 19] for representative work in this area. The refinement criteria, however, are

orthogonal to the equation-solving aspect considered here, except to the extent that a part of the

computational work required by one of these tasks may be a by-product of the other. In the

examples, "good" refinement strategies can be done manually.

In general, tile interfaces can be the site of changes in the discretization besides just the

refinement level. For instance, the discrete stencil can change order at interfaces. Even the form of

the operators or the number can change at interfaces while still preserving the subdomain uniformity

required for efficient subdomain solution algorithms. As a motivational example, a reacting flow

problem frequently consists of large regions in which there is only transport of mass, momentum, and

thermal energy but no reaction among stable constituents to all adequate orders of approximation.
In other regions it is essential to retain a full set of composition variables, including trace radicals,

and reaction terms must also be retained in the equations. To accommodate such generality, the

routines that pack the buffer regions are responsible for providing the necessary mappings.



l I I

I

I

! -

!

I

I

Figure 5: One-dimensional schematic of the tile basis func-
tions.

3.2. Physical Boundaries

For generality, the equations for the physical boundaries are incorporated into the overall

system matrix, including Dirichlet conditions. Our implementation allows inhomogeneous Robin
boundary conditions at all boundary points, namely,

a(x, y)u + b(x, y)_ = c(x, y).

Either first- or second-order one-sided difference approximations to the normal derivative term may

be employed in the actual operator, but only first-order approximation is used in the preconditioners

(to preserve uniformity of bandwidth). Though tempting in their simplicity, Dirichlet boundary

conditions alone in the preconditioner were found to perform poorly in practice in mixed BC

problems, as expected. The hierarchical structure of the preconditioner renders the BC mismatch

between the operator and preconditioner difficult to study theoretically. The theory in [35, 39]

reveals that spectral equivalence is generally lost in such BC mismatches, but only a small number

of eigenvalues of the preconditioned operator may be responsible.

3.3. Comparison with Other Approaches

Before appealing to numerical experimention to illustrate the techniques presented above, we

briefly compare them with other known techniques arising from similar motivations.

The field of locally uniform mesh refinement is spanned by a continuum of resolution strategies

governed by clustering rules that control the size and shape of the refined subregions. Global

refinement lies at one extreme and pointwise adaptive refinement at the other. As soon as the global

tensor product mesh is abandoned, a host of difficult practical decisions must be made about data

structures and clustering algorithms. The logic required to handle the numerous types of subgrid-
subgrid interactions that can arise and to ensure the consistency of the possibly distributed data

structure can be a significant impediment to efficient parallelism. It is impractical to use domain-

based "horizontal" decompositions to obtain distributed parallelism if refined subgrids are allowed

to span the coarse grid in a general nested fashion. Instead, parallel decompositions of general,

multilevel, locally uniform composite grids should proceed by level, as argued and implemented in
[37]. tlowever, "horizontM" neighbor-neighbor interactions on a tensor-product grid of individually

refined tiles are simple.

The tile algorithm requires only one grid that possesses connectivity with arbitrarily distant

regions of the domain, namely, the grid of cross points. In the framework of the hierarchical basis

10



functiontechnique[2,47],wehavesimplyatwo-levelhierarchy,but thehigherlevelmaybedifferent
in differentsubregions.Figure5is aone-dimensionalillustration. This representsasevereconden-
sationof the rangeof intermediatescalespresentin multilevellocaluniformrefinement,on which
the asymptoticconvergencetheoryis based.Tilesaremuchcloserto beingthe softwareequivalent
of the "geometry-definingprocessors"(GDPs)of DeweyandPatera[13].The tile algorithmshares
the philosophyof commercialstructural analysispackagesofferinglibraries of elementsthat an
engineercanassemblein composinga domain,thoughcomparablytransparentuserinterfaceshave
yet to bewritten. Unlike most structural analysis packages, no global linear system involving all of

the degrees of freedom is formed, nor is an exact Schur complement derived through the expensive

process of static condensation. Rather, an iterative path to parallelism is elected.

In the latter respect, the tile algorithm is similar to the original additive Schwartz method [14]

and the techniques of [6]. All three rely upon a single, coarse-domain-spanning grid. The main

differences between the techniques of [6] and [14] and the tile algorithm are in the treatment of the

interfacial degrees of freedom. In the additive Schwarz technique, interior problems are solved on

extended overlapped subdomains, so that the interracial degrees of freedom of one subdomain are

interior points of another and thus demand no special consideration. In [6], good preconditioners

for the interracial degrees of freedom of abutting subdomains are derived theoretically for selfadjoint

operators. Near optimal algebraic convergence for the refined case has been proved for both classes

of algorithms in [15] and [5], respectively, for selfadjoint systems. For non-selfadjoint systems,

convergence proofs for the uniformly refined case have been given in [8] and [9], respectively.

A disadvantage shared by all two-scale approaches is that the coarse grid -- on which the

optimal approaches perform an exact solve, and on which we also prefer one -- cannot necessarily

remain as coarse as one might like. In contrast, multilevel methods are not held hostage to a fine

"coarse" grid. Even so, multilevel convergence estimates for non-selfadjoint operators are aided by

sufficiently fine coarse grids, and complex domain geometry or "ragged" coefficients can also make

a fine coarse grid desirable in practice.
General multilevel methods with a number of levels substantially larger than two maintain

their optimal convergence rates at the price of increasingly complex data-dependency patterns

with attendant degradation on multiprocessor architectures and intricacy of coding in practical

problems. The additive or asynchronous methods [36] relieve most of the interlevel data traffic
but do not obviate the need to collect data vertically across the levels at each iteration. The

ability of a two-level approach to obtain convergence rates only a log factor worse than optimal is

demonstrated in Section 4. Compelling overall superiority of approaches with a greater richness

of scales has not been established in production parallel software. In the course of establishing

it, experience on parallel computers with a two-level algorithm will be beneficial and will aid in

evaluating the complex tradeoffs.
We have too little experience with the full spectrum of methods discussed above to conjecture

about the sizes of the relevant constants in asymptotic complexity analyses or to provide experi-

mental comparisons (but see [9] for a comparison of the tile algorithm with additive Schwarz on a

model scalar convection-diffusion problem). It is clear, however, that the limitations of the tile al-

gorithm are shared to some degree by the optimal methods, while the simplicity of implementation

and straightforwardness of generalization are not universally shared.

4. Numerical Experiments

To illustrate the effectiveness of the tile algorithm in terms of the convergence of the iterations,

and the effectiveness of the locally uniform mesh refinement in terms of the convergence of the

discretization, we consider a suite of experiments.

11



(1,1)

(31s,1/2)

(7/8,1)

L1
I

(1,1)

(0,0) (0,0) (0,0)

(a) (b) (c)

Figure 6: The three domains considered in this paper.

4.1. Model Problems

We present ten model problems, each containing a single dependent variable and two indepen-
dent variables. Some of the problems below are selfadjoint and could be discretized in a symmetric

manner and perhaps solved more cheaply with conjugate gradients than with GMRES. Our main

interest, however, is in the more extensible formulation. In all the examples an exact solution of the

continuous problem £u = f is specified. From this u(x, y), all of the source terms f and boundary

condition inhomogeneities g may be calculated. In cases where the expressions for f and g are

sufficiently simple, they are written out along with the solution. The ten problems are defined

over three different domains, pictured in Figure 6. Perspective surface plots of the solutions to the

problems are given in Figures 7 and 8.

The first two examples, with constant coefficients and an exact solution quadratic in each

independent variable, are extremely simple and possess second-order finite difference representations
free from truncation errors. They are identical except for the type of boundary conditions along

one side of their square domain. These problems are not candidates for mesh refinement; rather,
they were chosen to illustrate the deterioration in convergence rate caused when Dirichlet boundary

conditions are replaced with Neumann, and to allow controlled experimentation on the effect of

mismatched boundary conditions in the preconditioner. The poor convergence of #2 using the

preconditioner of #1 originally forced the decision to expand the cross-point system to include

physical boundary points in the general case.

Problem #1: Pure isotropic diffusion with all Dirichlet boundaries

V2U = 4

u(x, y) = x 2 + y_

Dirichlet data on 01l

ft = Unit square

Problem #2: Pure isotropic diffusion with a partial Neumann boundary

12



Dirichlet dataon the threelowersidesof Of/

Ou 1) 2=
ft = Unit square

The next example is included to study orientation sensitivity of the substructuring resulting

from anisotropic diffusion, for comparison with Problem 1, to which it is identical when a = 1.

It is of further interest in that the order-of-magnitude ratio between the diffusion coefficients in

the z and y directions is mathematically indistinguishable at the discrete level from an order-of-

magnitude physical domain aspect ratio in an isotropic diffusion problem. Thus, the discretized
version of Problem 3 covers two physical problem parameter extremes in one.

Problem #3: Anisotropic diffusion

0 (aOU_ 02u = 2(a 4- 1)

u(z, y) = z 2 + y2

a=10

Dirichlet data on Of/

12 = Unit square

The fourth example is a prototype convection-diffusion problem: a passive scalar in a plug

flow that is well developed at the outflow. It is a companion problem to #2 in the sense of

possessing a smooth solution with one Neumann boundary, but it is asymmetric as a result of the

convection term. In that its anisotropy comes from a first- rather than second-order operator, it

also complements #3.

Problem #4: Plug-flow convection-diffusion with fully developed outflow boundary

oq_

-V2u Jr c_--_v- f

u(z,y)= sin(rx) sin (-_)

c= 10

u = 0 on the three lower sides of Of/
Ou

f_ = Unit square

The next two canonical examples (from the "population" of elliptic problems in [40, 41]) bring

in nonconstant coefficients, the latter in a non-selfadjoint way with Robin boundary conditions.*

Problem #5: Selfadjoint, nonconstant coefficient, Dirichlet boundaries

O"_ e_v + O-yy\ ay ] l+z+y

u( y) = e sin( sin( y)
u = 0 on Of/

f/= Unit square

* The more widely available reference [28] containB an identical listing of Problem 5 and a s]rnJlar but not identical version

of #6. A typographical error in the latter renders it ill-posed.

13



(a] {b}

I, I

t,1

(o)
•'_ %

{d)

IA

• o,_l, °

Figure 7: Surface plots of the test problem solutions: (a) #1-

3, (b) #4, (c) #5, (d) #6.

Problem #6: Non-selfadjoint, nonconstant coefficient, Robin boundaries

O2u O ( .2_Ou'_ Ou (1 + 2y + y2- cgu{i+y,,N)0x }N
u(x,y) = 0.13S( e=+v + (x 2 - x) 21og(1 + y2))

Ou

u - O"--n= g on Oft

_2 = Unit square

=I

The derivative is the outward normal.

The seventh example, from [4, 30], is on an irregularly shaped domain with reentrant corners,
but possesses a smooth solution. It emphasizes how an irregular domain may force a minilnum

granularity upon a tessellation comprising congruent tiles. For the problem at hand, however, the

minimum granularity is near the ideal one.

14



(e}

I,1

t_

h

(f}

(g) (h)

Figure 8: Surface plots of the test problem solutions: (e) #7,

(f)#8, (g) #9, (h) #10.

Problem #7: T-shaped domain

V2u = 4 - 2 cos(y)e"

.(_, y) = x2+ y2- _e"cos(y)
Dirichlet data on Oft

_2 = T-shaped region

The last three examples are obtained by taking three different values of the convection

respectively, e = 0, c = -1, and c = 10 n in the convection-diffusion problem below.

Problems #8-10: Cylindrically separable reentrant corner convection-dlffusion problem

c Ou
-V:u + -_ = 0

r Or

15



c=O, a=213 c=-I, a=|IB c=I0, a=lO.Oqq2
2 ............. 2 .......... , .... 40 ..............

°o:" o: ....O" 5' 'Ii0'

r"

Col

31 32o

o.s 1.o
¢-

(b}

0,0" 0.5 1.0

{c)

Figure 9: Cross section of u(r) along the symmetry axis:
(a) Problem #8, pure diffusion, nondifferentiable at r = 0;

(b) Problem #9, convective inflow, strengthening the singu-

laxity; (c) Problem #10, convective outflow, eliminating the
singularity.

where r = _/(z - 1) 2 + (y - 1) 2

and0=arg((x-1)+i(y-1)), 0<O<2r

Dirichlet data on 0£

ft = L-shaped region

The first of these corresponds to pure diffusion, and the second and third to convection in towards
the reentrant corner and away from it, respectively, at a rate inversely proportional to the radius.

The respective values of the radial eigenfunction exponent a are ], I, and approximately 10.04,

equation formula a = [c + V/c2 + !_J/2. Figure 9 displays u(r) along the rayfrom the Euler

0 = -_, which is the symmetry axis of the three L-shaped problems. The first two solutions of this

trio lack derivatives at the reentrant corner. The last is everywhere twice differentiable, but the

solution is characterized by steep variation in the three nonreentrant corner regions, where r > 1.

Local mesh refinement is critical to improving the accuracy of a finite difference solution. In [24]

we show the complementary benefit of rediscretization of the tiles surrounding the reentrant corner

in Problems 8 and 9 to fit the discrete solution to the known power-law radial dependence of the

singular exact solution (see the problem statements above). Rather than making the customary

Taylor series assumptions, we take u(r) = uo + arP + br2P, where p is derivable from a local analysis.

4.2. Parameters Studied

Four categories of experiments are reported. First, a two-dimensional parameter space consist-

ing of coarse grid resolution and overall (uniform) resolution is explored by numerical experiment
for each problem. The goal of these experiments is the evaluation of the convergence of the algo-

rithm, in terms of iteration count and execution time, over a range of resolutions for comparison

with a back-of-the-envelope complexity analysis in Section 4.3 and related theory in Section 4.4.

No adaptive refinement is performed.

Another set of experiments is performed on Problems 8-10 only with the goal of evaluating the

economy of the locally uniform refinement technique. We show that LUMR is Capable of significant

CPU and memory savings with no sacrifice of accuracy relative to uniform refinement.

16



In a third set of experiments,the effectof orientationfor nonunit-aspectratio tiles is inves-
tigated. The linfiting caseof stripwisedecompositionsshowshowphysicalanisotropiescan be
exploitedin the decompositionfor improvedconvergence.

Finally,wecomparethe domain-decomposedpreconditionerof thispaperwith somepopular
global preconditionersand with the topologicallyrelateddirect solveusinga nesteddissection
ordering[21].

Additionalstudies,includingmodularreplacementof ¢i.tor BB with some of the alternatives

listed in Section 2, are available in [24]. Use of two different orders of discretization in A and

B is explored in [33]. (This approach loses the identity block in (2.3) but delivers higher-order

upwinding while preserving monotonicity in the preconditioner.) In this study, we simply use
fi,1 = At, fi,lB = AIB, and fi-sc = ABe and derive BB from the tangential terms of the differential

operator.

The timings given below are from a SPARCserver 390 with 64-bit reals. The code was written in

C except for low-level Fortran kernels, such as factoring or solving linear systems entirely resident

on one processor. Relative comparisons of CPU times for alternative formulations of the same

problem executed in the same hardware and software environment are an important part of our

results. It should be borne in mind while studying the results that different organizations of the

code and different compiler capabilities can account for large variations in execution times across

architectures and software releases; therefore, absolute execution times are not very meaningful.

We have run the same experiments (or representative subsets, to the extent supported by memory)

in scalar mode on seven other Unix machines and find that even the proportions of time spent in

factorization and solution phases may vary widely between machines. In spite of this, there are

surprisingly few shifts in the overall performance rankings of alternative decompositions. In other

words, while the timings in the tables are far from machine independent, the conclusions based

thereon are, until parallelism enters the picture.

4.3. Convergence as a Function of Coarse Grid Granularity

To test coarse-grid granularity over an interesting range, we fix the finest mesh spacing at

h -l = 128 (relative to the total length of the domain, whether that be 1 in the problems posed on

the unit square or 2 in the problems on the L-shaped domain) and investigate the tradeoff between

numbers of tiles and points per tile, as shown in Tables 1 and 2 and plotted in Figure 10. The mesh

is identical and uniform for all runs in these tables (with the obvious exception that pieces of the

circumscribing square are missing from it in Problems 7-10, whose columns therefore lack entries

at the coarsest tile subdivisions). The convergence criterion is a relative reduction in residual of

five orders of magnitude. Throughout these studies we use an initial iterate of zero. Table 1 shows

that the iteration count peaks in the middle of the granularity range, at 4 or 8 tiles per side, and

decreases to 1 in either degenerate limit of one tile per domain or one tile per point (not shown),

where a global direct solve results.

Table 2 shows the deceptiveness of iteration count alone as a measure of overall performance.

In execution time, the extreme runs, representing few-domain cases, suffer as a result of the high

cost per iteration, even though the number of iterations required is very small. This table is a

profound illustration of an earlier version of [11], entitled Domain Decomposition Beneficial Even
Sequentially. The most favorable total sequential execution times are found for multidomain cases

at 16 or 32 tiles per side.

The factorization of the banded matrix in the single subdomain case is the dominant contri-
bution to the overall time. In Problems 1-6, over six minutes are spent doing the factorization

alone. A similar penalty would accrue in an attempt to do direct solves on a very fine "coarse"

grid, in which each tile contains just one point. However, this second peak is not visible since the

table is truncated below tile sizes of H/h = 4. Even in modest-sized two-dimensional problems,

17



H -l H/h

1 128

2 64

4 32

8 16

16 8

32 4

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
1 1 1 1 1 1 ....

10 14 18 25 26 17 - 12 I1 4

11 15 24 25 32 21 - 15 16 15

9 12 25 21 29 16 11 14 15 16

7 10 22 18 26 12 10 11 12 13

6 7 15 14 21 7 8 8 9 8

Table 1: Iteration count as a _nction of number of tiles

per side of the circumscribing square, H-', and number of

mesh points along a tile side, H/h, at constant refinement

parameter, h -I = 128, for a reduction in the initiM residual
of I0-s.

H-I

1

2

4

8

16

32

H/h
128

64

32

16

8

4

#1 #2 #3 #4 #5 #6
371.

109.

34.7

12.0

5.5

6.8

376.

118.

39.7

14.4

8.0

7.9

371.

127.

51.9

26.2

18.3

17.9

373.

144.

53.3

22.5

14.4

16.3

371.

145.

62.4

29.8

22.1

27.2

375.

125.

47.9

17.8

9.6

7.9

#7 #8 #9 #i0

- 86.1 84.2 73.0

- 30.3 31.4 30.5

10.2 I1.9 12.4 13.1

5.7 6.0 6.7 7.2

6.5 6.4 7.1 6.,1

Table 2: Total execution time (see), including both precon-

ditioner factorization and GMRES iteration, as a function of

number of tiles per unit length, H -1, and number of mesh

points along a tile side, H/h, at constant h -1 = 128, for a
reduction in the initial residual of 10 -5 .

qo

2O

° o

No. of ]tocotlons
! !

, I , I , I
2 q 6

Log of No. of T11es on a Side

400

200

0
0

Totol Executlon Tlmo [soo}
I I !

2 q 6

Log of No. of Tiles on a Side

Figure 10: Plots of Tables 1 and 2 (Problems 1-10 super-

posed), illustrating that the minimum execution time of the

serial algorithm occurs near H -1 = 16 tiles on a side, though

the maximum iteration count occurs near this granularity.

(The dashed portions of the curves are extrapolated beyond

the data of the tables.)

direct solves on the undecomposed domain are inefficient relative to decomposition-preconditioned

GMRES. Of cofirsei there are many alternatives to direct solves for solving a smooth elliptic equa-

tion discretized on a tensor-product grid problem on a uniprocessor, some of which are considered

18



H-1

2

4

8

16

h -1 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
16 6 9 11 11 12 ll NA 6 6 3

32 9 12 17 15 19 17 NA 12 12 10

64 9 11 22 18 23 15 10 12 13 14

128 7 10 22 18 26 12 10 11 12 13

Table 3: Iteration count as a function of number of tiles per

side of circumscribing square, H -1, and refinement parame-

ter, h -1, at constant number of mesh points along a tile side,
H/h = 8, for a reduction in the initial residual of 10-5.

in Section 4.7, but most are not coded or parallelized as cleanly as domain-decomposed Krylov
iteration.

The behavior in Table 2 can be understood with reference to back-of-the-envelope complexity

estimates for the solution and factorization operators of the preconditioner. We observe that there

are O(H -2) cross points, interfaces, and interiors. Naturally ordered banded direct factorizations

and solves require O(Nb _) and O(Nb) operators, respectively, where N is the number of unknowns
and b the bandwidth. For the cross-point system, N _ H -2 and b .._ H-l; for the interfaces,

N = H/h and b = 1; and for the snbdomain interiors, N = (H/h) 2 and b = H/h. Thus, the interface
operation counts are always asymptotically subdominant and can be omitted in the following. From

choosing the larger of the cross-point and interior complexities, we see that factorization costs

max{O(H-4),O(It2h-4)} and solves cost max {O( U-3), O( It h-3) }. The first term grows with

H -1 and the second decays with it. Quick calculations reveal that (to the resolution of the table)
the minima for both factorization and solve costs occur at or between H -1 = 16 and 32 when

h -1 = 128. The tendency of buffer overhead, neglected in these estimates, is to favor a slightly

smaller number of tiles per side than thus estimated. It is important to note that the memory
requirements follow the solve complexities above. Thus, for a fixed memory size, an intermediate

cross-point grid granularity accommodates the largest problem in core. Of course, all of these
per iteration complexity estimates must be redone when the preconditioner blocks are other than
banded direct solves.

4.4. Convergence as a Function of Refinement

In contrast to the preceding section, we here investigate iteration count as a function of overall

resolution, for a fixed number of subintervals per tile. The results are shown in Table 3. The global

mesh grows in refinement from 16 to 128 while the number of points per tile remains constant at

8. Thus, the fine grid in the last row of Table 3 corresponds to the H -1 = 16 row of the earlier

tables. In spite of the fact that the truncation error improves with h -_ in some of these problems,

we impose a constant convergence tolerance of 10 -s on the tests in the upper rows of Table 3, in

order to focus on the algebraic convergence alone.

With the minor exception of #5, which has not quite reached its iteration maximum at 16

tiles per side, the experiments suggest that the iteration count is bounded as resolution increases

at constant H/h. In over half of the cases, the finest mesh results are even relatively better than

the immediately preceding coarser ones. This fact is not surprising since there is a price for this

favorable iteration count when H/h is held constant and h-! is increased, namely, a larger cross-

point system. The theory for conjugate gradient iteration for selfadjoint problems [6] and for

GMRES iteration for'non-selfadjoint problems [9] contains similar results for abutting domains,

namely, constant upper bounds on the iteration count for constant H/h.

As representative convergence histories, we present Figure 11 which follows the residual re-

duction over five orders of magnitude, and the time versus iteration count history for Problems 1

and 2. In the latter plots, the quadratic term in the GMRES work estimate (that comes from the

19



to I

10_

%.
0

Io"_
o

lo-s

10-4

]o

lJ=lllw

5

[o)

Io'

I0 I

O

_ iO-I
%.

0

_ Io-z
O

IO-S

lO lO'q0

]0

!

.... ! , l ! i

5

{b)

!

IO

8s
0
0

° o 5

(o)

8s
0
0
(/3

10 O0 5 Io

(d)

Figure 11: Convergence histories for Problems 1 and 2, for

It -_ = 16, H/h - 8, h -1 = 128. (a) and (b) show the
normalized Euclidean norm of the residual versus iteration

count, and (c) and (d) show time versus iteration count.

need to orthogonalize each iterate over a subspace whose size grows linearly in iteration count) is

almost invisible. This is due to the exploitation of the identity row in (2.3). This pair of figures also
illustrates the poorer conditioning of Neumann problems, since the initial iterates and the solutions

converged to are identical, and so are the operators except for one Neumann boundary segment.

4.5. Economies of Local Mesh Refinement

Problems 8-10 can be used to illustrate the well-known benefits of local uniform mesh refine-

ment in elliptic problems: comparable accuracy in considerably fewer operations, compared with
global uniform refinement. We solve these problems at effective refinement levels of h -1 = 32, 64,

128, and 256, based on the global grid, but perform both global and local refinements for compar-

ison where possible. (The finest global refinement does not fit into the memory available, which

is, of course, another of the main motivations for LUMR, along with execution time savings.) All
of these computations were made with a reduction in the algebraic residual of 10 -8, so that the
measure of the truncation error would not be contaminated. The choice of where to refine is made

manually.

Tables 4 through 6 compare global refinement results on the left, and local on the right. The

2O



£
0

£
0

_0
0

_0
0

010 I.... _o sooo
otoll 3 o o o
oll,Y Tooo

....... L--

11113 3 0 0 0
111i3 311111ol 3 o o o

qTT IITIolOl_' '_'_ s o o o

01iil i_ 3 :S 0 0_i_-o- TTT

0 0

ojo
3 3

{o} {hi

Figure 12: Refinement levels, indicated by the logarithm

of the refinement ratio. The maximum (third level) local

uniform refinements are shown: (a) Problems 8 and 9, (b)

Problem 10. In second-level tests, all tiles showing "3" are

set to "2". In first-level tests, these are further reduced to

"1". In zeroth-level refinement, all tiles are set to "0", which

here corresponds to H/h = 4.

h-1

32

64

128

256

Global

H/h Na ea

4

8

16

32

833

3201

12545

1.30(-2)
8.3o(4)
5.25(4)

/a

18

22

26

Tc

2.6

8.1

48.1

NL

833

1817

2409

4745

Local Ratio

eL IL TL TG/TL

1.30(-2) 18 2.6 1.00

8.30(-3) 22 5.5 1.47

5.26(-3) 23 7.9 6.08

3.33(-3) 28 31.8 -

Table 4: Number of unknowns N, sup-norm of the error e,

iteration count I, and execution time T (sec) for Problem

8 (reentrant corner, pure diffusion), globally and locally re-

fined, along with execution time ratios, for a reduction in the
initial residual of 10 -s.

local refinement is as illustrated in Figure 12. Each set of columns lists the number of unknowns,
the sup-norm of the error, the number of iterations to reduce the discrete residual by 8 orders of

magnitude, and the total execution time thus required. The right-most column gives the execution

time ratios for each refinement level. Memory use ratios can also be estimated from the tile structure
of the discrete problem, but the present code records no explicit allocation measurements. All

entries share a constant value of H -I = 8 in order to fix in space regions of enhanced refinement

that do not shrink as h does. Therefore, the "global" iteration columns of Tables 4-6 incidentally

provide a constant-H traverse through convergence rate parameter space, complementary to Table 1

(a constant-h traverse) and Table 3 (a constant-H/h traverse).

The linear increases of iteration count with each doubling of global refinement in the selfadjoint
problem in Table 4 and the nearly selfadjoint problem in Table 5 are consistent with a logarithmic

growth in conditioning with h -1. The locally refined examples likewise worsen mildly in condition-

ing with h -1 when H is held constant, but the CPU time advantage, (Ta/TL), of local refinement

increases with h -1 overall. Comparing iteration counts of globally and locally refined problems at

the same effective refinement shows that the often drastically smaller number of unknowns in the

21



h- 1

32

6,1

128

256

Global

H / h ?Ca ea

4

8

16
32

833

3201

12545

/a Ta

6.97(-2) 18 2.5

5.65(-2) 23 8.7

4.53(-2) 28 51.3

Local

NL eL

833 6.97(-2)

1817 5.66(-2)

2409 4.58(-2)

4745 3.67(-2)

/L
18

23

25

28

Table 5: Same as Table 4, except for Problem 9 (convective

inflow).

Ratio

TL Tc/TL
2.5 1.00

5.8 1.50

8.9 5.76

31.9

h-l

32

64

128

256

Global

H/h ?Ca ea

4

8

16

32

833

3201

12545

/a Ta

7.35(-1) 19 2.9

4.15(-1) 23 8.8
2.19(-1) 29 55.6

Local

NL

833

1609
4697

17017

eL IL

7.35(-1) 19
4.30(-1) 22
2.40(-1) 27

1.98(-1) 34

Table 6: Same as Table 4, except for Problem 10 (convective

outflow). The error values here appear large but are, in fact,

small relative to the size of the solution (recall Figure 9c).

Ratio

TL Tc/TL
2.4 1.00
5.1 1.73

20.1 2.77

170.2

latter does not much affect convergence. This observation leads to the hypothesis that in the case

of variously refined tiles, (H/hnn¢st) is the convergence-controlling parameter, with the details of

the tile size distribution important only in estimating the work per iteration.
The sup-norm of the error shows sublinear improvement in h in Problems 8 and 9, as one

expects with nondifferentiable solutions; and, though the solution of Problem 10 is smooth, the

first-order accurate treatment of convection leaves its signature instead.

4.6. Anlsotropic Decompositions

Throughout the foregoing, we have considered decompositions of the problem domain into

uniform square tiles exclusively. More general decompositions are possible and should often be

considered. Varying the aspect ratio and the orientation of tiles can lead to significant variations

in convergence rate in anisotropic problems. Problems #1-4 of the test suite contain a sufficient

variety of operators and boundary conditions to illustrate this point. Table 7, based on these

four problems, provides a link between the boxwise decompositions studied in this report and the

stripwise decompositions employed in many of our earIier studies, such as [32]. Four different de-
compositions are considered in this table: vertical strips, horizontal strips, a boxwise decomposition

with the same number of tiles as the strip cases, and a boxwise decomposition whose tiles have the

same bandwidth as that of the most compact natural ordering of the strip cases. These decompo-

sitions are shown in Figure 13. In every case, the mesh spacing is held constant at h -1 = 128; thus

these problems contain 16,641 discrete unknowns.

Among the two boxwise decompositions, the finer is always closer to the optimum found earlier
in Table 1 for iteration count and in Table 2 for execution time.

Contrasting the boxwise and stripwise decompositions, we note that for isotropic Problems 1

and 2 the isotropic (boxwise) decompositions lead to significantly better iteration counts than the

nonisotropic (stripwise) decompositions. The coarser boxwise decomposition nevertheless leads to
poorer execution times than either stripwise decomposition because of the large bandwidth of its

tiles resulting in large factorization costs in setting up the interior solves of the preconditioner. The

finer boxwise decomposition yields the best execution times.

22



i I
] , -t._

L2
Figure 13: The four decompositions tested in Table 7: (a) ver-

tical strips, (b) horizontal strips, (c) "large" boxes with the

same granularity as the strips, (d) "small" boxes with the
same bandwidth as the strips.

Case H_ -1
a 16

b 1

c 4

d 16

#i -L2 #3 _t4

H,71 I T I T I T I | T
1 20 13.7 29 20.5 52 40.5 4 3.5

16 20 13.7 23 15.9 12 8.4 16 10.9

4 11 34.7 15 39.7 24 51.9 25 53.3

16 7 5.5 10 8.0 22 18.3 18 14.4

Table 7: Iteration count I and total execution time T (sec)

as a function of the tessellation parameters H_ "1 and H_ -x, at

constant mesh parameter h -1 = 128, for a reduction in the
initial residual of 10-s.

For the nonisotropic Problems 3 and 4, one or both of the nonisotropic decompositions is

superior in both iteration count and execution time to both of the isotropic decompositions. In
Problem 3, we note the major advantage of handling the strong x-directional diffusive coupling

as implicitly as possible in the preconditioner when few (here 16) subdomains are employed. In

Problem 4, where the diffusive part of the operator is isotropic, the decomposition that is aligned

with the strong convection is superior. This is related to the relatively poorer performance of

the tangential interface preconditioner in problems where the convection is normal to the inter-

face rather than tangential to it [12]. In spite of the poor representation of the convection in the

interface blocks for Problem 4, case (b), the "wrong" stripwise decomposition is still slightly su-

perior to the best boxwise decomposition. Though the boxwise decomposition convergence rates

are asymptotically superior to the stripwise decomposition convergence rates (see the theoretical

arguments summarized in [30]), the crossover point is evidently strongly influenced by the physics
of the problem.

4.7. Comparison with Undecomposed Preconditioners

Tables 1 and 2 produced the observation that among preconditioners employing direct banded

23



Method
GMRES(90)/ILU(0)
GMRES(90)/MILU(0)
GMRES(90)/ILU(1)
GMRES(5)/ILU(0)
GMRES(5)/MILU(0)

GMRES(5)/ILU(1)
Direct

GMRES(90)/DD

GMRES(5)/DD

#1 #2 #3 #4,, #5
73 108 80 82 99

22 77 19 147 39

45 58 61 51 59

351 312 227 > >

27 141 23 > 57

139 150 140 213 244

1 1 1 1 1

7 10 22 18 26

8 10 28 25 39

Table 8: Iteration counts for problems #1-6 for seven dif-

ferent algorithmic combinations at a mesh parameter h -1 =

128, for a reduction in the initial residual of 10 -5. ">" sig-
nifies more than 500 iterations.

#6
>

>

160

>

>

>

1

12

12

factorizations for both the cross-point system and the subdomain interiors, a tessellation of in-

termediate granularity is much superior to one at either coarse or fine extremes. In other words,
domain decomposltion-precondltioned GMRES methods are superior to bandsolvers even on se-

quential computers and even in two dimensions. It is of interest to attempt to strengthen such a

statement by comparing domain decomposition-preconditioned GMRES iteration with other can-

didate solvers in the sequential, two-dimensional context. For this purpose, a direct sparse matrix

solver and three popular incomplete factorizations have been implemented as alternative subdo-

main interior preconditioners and compared with the domain-decomposed preconditioner on the
first six problems of the test suite.

Table 8 lists the iteration counts and Table 9 the execution times for nine different solution

algorithms callable from the same code used to generate all previous tables. (The global domain

solvers contain just one tile.)

Six of these solvers are iterative methods based on GMRES and global preconditioners of

the incomplete factorization type, tested in two sets of three each. In each set, we test ILU(0),

ILU(1), and MILU(0) [16, 38], where the integer in parentheses denotes the number of diagonals

of extra fill-in retained adjacent to the original five-diagonal structure of the discrete operator

[46]. In the first set, the maximum size of the Krylov subspace used in GMRES is 90; in the

second set, the maximum Krylov subspace has dimension 5. In a majority of cases, the globally

preconditioned GMRES iteration converges in fewer than 90 iterations; thus, the first set consists

mainly of full GMRES convergence results. In practical applications, restated GMRES is often

used to conserve memory or defeat the quadratic term in the GMRES work estimate that arises

from orthogonah_/afion over an ever-expanding Krylov subspa_:e. GMRES(k) den0tes a restart after
k steps, " " -

One of the sobers is a direct method, the Yale Sparse Matrix Package [17] using a global

nested-dissection ordering (rather than the minimum degree ordering provided with YSMP), which
naturally converges in one step.

Finally, we test two domain-decomposed GMRES algorithms based on a 16 × 16 array of 8 × 8
tiles. Both are slight variants of the algorithm used in preceding sections in which the bandsolver

is replaced with the nested-dissection sparse solver. Full GMRES and GMRES(5) are considered.
Comparing first the convergence rates of the various global preconditioners, we observe that in

the diffusively dominated problems with Dirichlet boundary conditions (#1,3,5) the fill-capturing

modified incomplete factorization MILU(0) iS much superior to ILU(0) and ILU(1). The existence

of a non-Dirichlet boundary segment weakens MILU (boundary conditions are the only difference

24



Method
GMRES(90)/ILU(0)
GMRES(90)/MILU(0)
CM ES(90)/ILU(1)
GMRES(5)/ILU(0)

GMRES(5)/MILU(0)

GMRES(5)/ILU(1)

Direct/Nest. Diss.

GMRES(90)/DD/Nest. Diss.

GMRES(5)/DD/Nest. Diss.

#i #2 #3 #4 #5 #6
121. 191. 142. 149. 183. -

16.7 133. 13.5 256. 41.2 -

54.2 83.1 90.1 66.7 85.4 297.

195. 173. 126. - - -

14.9 78.6 12.6 - 31.5 -

82.8 90.7 84.3 128. 136. -

71.2

7.1

8.2

70.1

9.9

10.4

70.1

23.8

25.0

70.1

18.7

23.2

70.0

29.7

34.2

71.6

12.0

12.0

Table 9: Execution times (sec) for problems # 1-6 for ten dif-

ferent algorithmic combinations at a mesh parameter h -1 =
128, for a reduction in the initial residual of 10 -s. The best

time in each column is italicized.

between #2 and #1), and the presence of convection weakens it substantially (#4,6). As expected,

ILU(1) uniformly requires fewer iterations than ILU(0) in these tests, and this "convergence rate

advantage translates into an execution time advantage even after the marginally higher cost of the

ILU(1) preconditioner is taken into account. Experience with ILU(I) shows a law of diminishing
returns as 1 increases beyond a fairly small problem-dependent value. The tests with GMRES(5)

show how the higher iteration counts of a restarted method often translate into lower execution
times for well-conditioned problems, but how poorly conditioned problems may fail to converge

with too small a Krylov subspace.

tIaving noted the strong degree of problem dependence in the selection of the best global
preconditioner, we note that this problem dependence extends to the relative ranking of glob-

ally preconditioned GMRES and the direct sparse nested dissection factorization. In terms of

execution time, the nested dissection method loses out to the best global iterative method, GM-

RES(5)/MILU(0), in the odd-numbered problems, is close to the best global iterative method,

GMRES(90)/ILU(1) in Problem 4, and beats all globally preconditioned methods in Problems 2
and 6.

Comparison of the nested dissection rows of Table 9 with the rows of Table 2 at corresponding

granularity reveals, as expected, that the sparse direct subdomain solvers run faster than the

banded direct subdomain solvers on large problems (approximately 70 sec versus approximately

370 sec on 128 x 128 tiles) and slower than bandsolvers on small ones (by approximately 20-30%

on 8 x 8 tiles). The latter observation justifies our use of bandsolvers to perform the A-_ 1 solves

in the preconditioner throughout the majority of this report, where the focus is on relatively fine

granularity.

Finally and most significantly, we observe that domain decomposition-preconditioned GMRES

always beats the direct method, and it beats the best globally preconditioned method in all problems

except for #3, for which good preconditioners of both global and domain-decomposed varieties can

be found. Overall, it is the fastest executing method and performs reliably and evenly over the

range of problems considered. It is a compelling serial algorithm even apart from the virtues of
modularity and adaptability.

5. Conclusions and Future Directions

Experiments on a variety of model problems demonstrate that a two-level domain decom-

position algorithm with a single global coarse grid provides effective convergence and convenient

25



refinementandpermitsa datastructure amenable to parallel and vector implementations, as sum-

marized in closing below. Although often motivated by parallelization, domain decomposition

also yields runtime and memory use benefits as a sequential algorithm. Relative to traditional
global preconditioners, domain-decomposed preconditioners can dramatically improve convergence

rates. Furthermore, the simple structure of individual blocks of the domain-decomposed precondi-

tioner means that new applications are found for the "standard solvers" in Conventional software

libraries. The traditional economies of local uniform mesh refinement can be incorporated into

the domain decomposition framework at the small price of interface handlers with conditionals for

refinement differences between adjacent Subdomains. Because of the highIy modular nature of a

tile-oriented domain decomposition code, custom discretizations for certain classes of singularities

may be archived into applications libraries for reuse. For example, a discretization tailored to the

corner singularities in Problems 8 and 9 was easy to add by creating three different rotations of a

special tile in [24]. In short, software engineering is a major motivation for the restricted class of

algorithms explored here.

The applicable problem class is greater than the present examples indicate; for instance, the

tile algorithm has been extended to multiple-dependent variable cases. A two-independent-variable

streamfunction-vorticity formulation of the incompressible Navier-Stokes equations is considered

in [26, 27]. The nonlinearity in this problem is handled by a Newton method wrapped around

the domain-decomposed linear solver. The entire nonlinear code has been parallelized on shared-

and distributed-memory machines, and the linear and nonlinear portions are comparable in their

parallel efficiencies (which vary in the usual way from arbitrarily good to arbitrarily bad, depending

upon problem size relative to number of processors).

Extension of the tile algorithm to a brick algorithm in three-dimensional problems is concep-

tually straightforward. The software engineering motivation for restriction to a tensor-product grid

of substructure vertices is even more compelling in three dimensions than it is in two. One new
feature is the presence of two-dimensional interfaces, upon which preconditioner blocks could be

constructed by dropping normal derivative terms, by analogy with one-dimensional interfaces in

the plane. The effectiveness of this straightforward extension is not demonstrated at present. For

the theoretically endowed selfadjoint case it is known that the condition number of the hierarchi-

cally preconditioned system grows like the first power of (H/h), not merely like its logarithm. A

discussion and some alternatives are presented in [43].

The tile algorithm is amenable to vectorization in either of two ways. The regular operation

sequences on the tensor-product subgrid arrays are precisely the type for which vectorizing compilers

were conceived. The vector lengths depend on the precise form of solvers used in the preconditioner
but would tend to be rather small for the rows of individual 8x8 or 16x 16 tiles found best in the two-

dimensional applications above. An alternative form of vectorization can be realized by grouping

together all tiles of a given (discrete) size and shape and operating in lock step on corresponding

elements in each tile, assuming an identical solver is applied to each. A vector in this approach
consists of the i th element from each of the subdomains. Thus, 8 x 8 arrays of tiles deliver optimal

processing rates for machines with a vector length of 64.
Parallelization requires attention to the load balancer/mapper [26] and also to the coarse grid

solve in the preconditioner [23]. The main disadvantage of the two-level algorithm in the parallel
context is that the choice of coarse grid granularity is more of an "overdetermined" problem than

in serial. Communication cost per iteration and Convergence properties potentially inveigh against
the lower bounds on the number of tiles imposed by domain geometry, solution and coefficient

roughness, and parallel load balance. The key determination for future applications of the tile

methodology will be whether this overdetermination is "consistent" in practice. Inasmuch as the

26



early examplesare representative of one or two dependent variable problems, and parallel com-

munication costs generally comprise a relatively smaller proportion of the total work in coupled

multicomponent problems, there are substantial grounds for optimism that this will be the case.

Acknowledgments

We express our deep appreciation to Dr. Xiao-Chuan Cal for his influence on the refinement

of the tile algorithm through his mathematical insight and through his experience in using the
code and in adapting it to additive Schwarz-type preconditioning. We are also indebted to two

anonymous referees for constructively critical comments on an early version of this manuscript.

27



References
[1] I. Babu_ka, J. Chandra, and J. Flaherty eds., Adaptive Computational Methods for Partial

Differential Equations, SIAM, Philadelphia, 1983.

[2] R. E. Bank and H. Yserentant, Some Remarks on the Hierarchical Basis Multigrid
Method, T. F. Chan, R. Glowinskl, J. Periaux, and O. Widlund eds., Second

International Symposium on Domain Decomposition Methods, SIAM, Philadelphia,

1989, pp. 140-146.

[3] M. J. Berger and J. Oliger, Adaptive Mesh Refinement for Hyperbolic Partial Differential

Equations, J. Comp. Phys., 53 (1984), pp. 484-512.

[4] P. E. Bjorstad and O. B. Widlund, Iterative Methods for the Solution of Elliptic Problems

on Regions Partitioned into Substructures, SIAM J. Num. Anal., 23(1986), pp.
1097-1120.

[5] J. H. Bramble, R. E. Ewing, J. E. Pasciak, and A. H. Schatz, A Preconditioning Technique for

the Efficient Solution of Problems with Local Grid Refinement, Comp. Meth. Appl.

Mech. Eng., 67 (1988), pp. 149-159.

[61 J. It. Bramble, J. E. Pasciak, and A. tI. Schatz, The Construction of Preconditioners for

Elliptic Problems by Substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[7] A. Brandt, Multi-level Adaptive Techniques (MLAT) for Fast Numerical Solution to

Boundary-Value Problems, It. Cabannes and R. R. Temam eds., Proceedings of the
Third International Conference on Numerical Methods in Fluid Mechanics, Lecture

Notes in Physics, I8, Springer-Verlag, 1973, pp. 82-89.

[8] X.-C. Cai, An Additive Schwarz Algorithm for Nonselfadjoint Elliptic Equations, T. F.

Chan, R. Glowinski, J. Periaux, and O. Widlund eds., Third International Sym-

posium on Domain Decomposition Methods for Partial Differential Equations, SIAM,

Philadelphia, 1990, pp. 232-244.

[9] X.-C. Cai, W. D. Gropp, and D. E. Keyes, Convergence Rate Estimate for a Domain
Decomposition Method, Technical Report 827, Yale University, Department of

Computer Science, October 1990.

[10] T. F. Chan, Boundary Probe Domain Decomposition Preconditioners for Fourth Order

Problems, T. F. Chan, R. Glowinski, J. Periaux, and O. Widlund eds., Second

International Symposium on Domain Decomposition Methods, SIAM, Philadelphia,

1989, pp. 168-172.

[11] T. F. Chan and D. Goovaerts, A Note on the Efficiency of Domain Decomposed Incomplete

Factorizations, SIAM :1. Sci. Stat. Comp., 11 (1990), pp. 794-803.

[12] T. F. Chan and D. E. Keyes, Interface Preconditiongs for Domain-Decomposed Convection-

Diffusion Operators, T. F. Chan, R. Glowinski, J. Periaux, and O. Widlund eds., Third

Internation_al Symposium on Domain Decomposition Methods for Partial Differential
Equations, SIAM, Philadelphia, 1990, pp. 245-262.

[13] D. Dewey and A. T. Patera, Geometry-Defining Processors for Partial Differential Equations,

B. J. Alder ed., Architectures and Performance of Specialized Computer Systems,

Academic Press, New York, 1988.

[14] M. Dryja, An Additive Schwarz Algorithm for Two- and Three-Dimensional Finite Element

Elliptic Problems, T. F. Chan, R. Glowinski, J. Periaux, and O. Widlund eds., Second
International Symposium on Domain Decomposition Methods, SIAM, Philadelphia,

1989, pp. 168-172.

28



[15] M. Dryja and O. B. Widlund, On the Optimality of an Additive RefinementMethod, J.
Mandel,S.F. McCormick,J. E. Dendy,Jr., C. Farhat,G. Lonsdale,S.V. Parter,J.
W. Ruge,andK. Stubeneds.,Proceedings of the Fourth Copper Mountain Conference

on Multigrid Methods, SIAM, Philadelphia, 1989, pp. 161-170.

[16] T. Dupont, R. Kendall, and H. H. Rachford, An Approximate Factorization Procedure for
Solving Self-Adjoint Elliptic Difference Equations, SIAM J. Num. Anal., 5 (1968), pp.
559-573.

[17] S. C. Eisenstat, tl. C. Elman, M. H. Schultz, and A. H. Sherman, The (New) Yale Sparse

Matrix Package, Technical Report 265, Yale University, Department of Computer

Science, April 1983.

[18] R. E. Ewing and R. D. Lazarov, Adaptive Local Grid Refinement, Proceedings SPE Rocky

Mountain Regional Meeting, 1988. SPE No. 17806.

[19] J. E. Flaherty, P. J. Paslow, M. S. Shepard, and J. D. Vasilakis eds., Adaptive Methods for

Partial Differential Equations, SIAM, Philadelphia, 1989.

[20] R. W. Freund and N. M. Nachtigal, QMR: A Quasi-Minimum Residual Method for Non-
ltermitian Linear Systems, Technical Report, RIACS, NASA Ames Research Center,
1990.

[21] A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM J. Num. Anal.,

10 (1973), pp. 345-363.

[22] W. D. Gropp, Local Uniform Mesh Refinement for Elliptic Partial Differential Equations,

Technical Report YALE/DCS/RR-278, Yale University Dept. of Computer Science,

July 1983.

[23] W. D. Gropp and D. E. Keyes, Domain Decomposition on Parallel Computers, hnpact of

Comput. in Sci. and Eng., 1 (1989), pp. 421-439.

[241 , Domain Decomposition with Local Mesh Refinement, Technical Report YALE/DCS/

RR-726, Yale University Dept. of Computer Science, August 1989.

[25] , Parallel Performance of Domain-Decomposed Preconditioned Krylov Methods for
PDEs with Adaptive Refinement, Technical Report YALE/DCS/RR-773, Yale Uni-

versity Dept. of Computer Science, April 1990.

[26] , Parallel Domain Decomposition and the Solution of Nonlinear Systems of Equations,

Technical Report Mathematics and Computer Science Preprint MCS-P186-1090,

Argonne National Laboratory, October 1990.

[27] , Domain Decomposition Methods in Computational Fluid Dy1_amics, Technical Report

91-20, ICASE, February 1991.

[281 E. N Ifoustis, R. E. Lynch, and J. R. Rice, Evaluation of Numerical Methods for Elliptic

Partial Differential Equations, J. Comp. Phys., 27 (1978), pp. 323-350.

[29] It. Jarausch, On An Adaptive Grid Refining Technique for Finite Element Approximations,

SIAM J. Sci. Star. Comp., 7(1986), pp. 1105-1120.

[30] D. E. Keyes and W. D. Gropp, A Comparison of Domain Decomposition Techniques for Elliptic

Partial Differential Equations and Their Parallel Implementation, SIAM J. Sci. Stat.

Comp., 8 (1987), pp. s166-s202.

[31] , Domain Decomposition Techniques for Nonsymmetric Systems of Elliptic Boundary

Value Problems: Examples from CFD, T. F. Chan, R. Glowinski, J. Periaux, and O.

Widlund eds., Second International Symposium on Domain Decomposition Methods,

SIAM, Philadelphia, 1989, pp. 321-339.

[32] , Domain Decomposition Techniques for the Parallel Solution of Nonsymmetric Sys-

tems of Elliptic BVPs, Appl. Num. Math., 6 (1990), pp. 281-301.

29



[33] , Domain-Decomposable Preconditioners for Second-Order Upwind Discvetizations of

Multicomponent Systems, Technical Report Mathematics and Computer Science

Preprint MCS-P187-1090, Argonne National Laboratory, October 1990.

[34] Y. Maday, C. Mavriplis, and A. T. Patera, Nonconforming Mortar Element Methods:

Application to Spectral Discretizations, T. F. Chan, R. Glowinski, J. Periaux, and O.
Widlund eds., Second International Symposium on Domain Decomposition Methods,
SIAM, Philadelphia, 1989, pp. 392-418.

[35] T. A. Manteuffel and S. V. Parter, Preconditioning and Boundary Conditions, Technical

Report LA-UR-88-2626, Los Alamos National Laboratory, July 1988.

[36] S. F. McCormick, Multilevel Adaptive Methods For Partial Differential Equations, SIAM,
Philadelphia, 1983.

[37] S. McCormick and D. Quinlan, Asynchronous Multilevel Adaptive Methods for Solvin 9 Par-

tial Differential Equations on Multiprocessors: Performance Results, Par. Comput.,
12(1989), pp. 145-156.

[38] J. A. Meijerink and tI. A. Van der Vorst, Guidelines for the Usage of Incomplete Decompositions

in Solving Sets of Linear Equations As They Occur in Practical Problems, J. Comp.
Phys., 44 (1981), pp. 134-155.

[39] W. Proskurowski, Remarks on the Spectral Equivalence of Certain Discrete Operators, T. F.

Chart, R. Glowinski, J. Periaux, and O. Widlund eds., Second International Symposium

on Domain Decomposition Methods, SIAM, Philadelphia, 1989, pp. 103-113.

[40] J. R. Price, E. N. tloustis, and W. R. Dyksen, A Population of Linear Second Order, Elliptic

Partial Differential Equations on Rectangular Domains - Part I, Technical Report

2078, Mathematics Research Center, Univ. of Wisconsin - Madison, May 1980.

[41] , A Population of Linear Second Order, Elliptic Partial Differential Equations on
Rectangular Domains- Part II, Technical Report 2079, Mathematics Research
Center, Univ. of Wisconsin - Madison, May 1980.

[42] Y. Saad and M. tI. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving

Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856-869.

[43] B. F. Smith, Domain Decomposition Algorithms for the Partial Differential Equations of Linear

Elasticity, Technical Report 517, Courant Institute, NYU, September 1990.

[44] B. Swartz, Courant-Like Conditions Limit Reasonable Mesh Refinement to Order h _, SIAM J.

Sci. Stat. Comp., 8 (1987), pp. 924-933.

[45] It. A. Van der Vorst, Bi-CCSTAB: A More Smoothly Converging Variant of CG-S for the

Solution of Nonsymmetric Linear Systems, 1990. (Preprint),

[46] J. W. Watts, III, A Conjugate Gradient-Truncated Direct Method for the Iterative Solution of

the Reservoir Simulation Pressure Equation, Soc. Petrol. Engin. J., 21(1981), pp.
345-353.

[47] II. Yserentant, On the Multi-level Splitting of Finite Element Spaces for Indefinite Elliptic

Boundary Value Problems, SIAM J. Num. Anal., 23 (1986), pp. 581-595.

30





i

I

i

_



_,,_.__._,_s,_ Report Documentation Page

1, Report No. 2 Government Accession No. 3. Recipient's Catalog No.
NASA CR- 187528

ICASE Report No. 91-t9
4. Title and Subtitle

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT

7 Author(s)

William D. Gropp

David E. Keyes

9. Performing Organization Name and Address
Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Spon_ring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

%

5. Report Date

February 1991

6. Performing Organization Code

8. Performing Organization Report No.

91-19

10. Work Unit No.

505-90-52-01

1t. Contract or Grant No,

NASl-18605

13, Type of Report and Period Covered

Contractor Report

14 Sponsoring _,gency Code

i 15, Supplementaw Notes

Langley Technical Monitor: Submitted to SIAM Journal of Scien-

Michael F. Card tific and Statistical Computation
/

Final Report
16. Abstract

We describe _ preconditioned Krylov iterative algorithm b&m_ on domain decompolition for linear syJtems arklng

from implicit finite-dlfference or finite-element dlscretizations of partial different_] equation problems requiring local

mesh refinement. To keep data structures as simpl e as possible for parallel computing applications, we define

the fundamental computational unit in the algorithm as a subregion of the don_n spanned by a iocal]y uniform
tensor-product grid, called a tile. In the tile-based domain decomposition approach, two levels of cUscretization

are considered at each point of the domain: a global coar_ grid defined by tUe vertices only, and a local fine grid

where the degree of resolution can vary from the to tile. One glol)al level and one local level provide the flexibility

required to adaptively diacretise a diverse collection of problerm on irregular regions and solve them at convergence

rates that deteriorate only logarithmically in the finest mesh parameter, with the coarse tessellation held _xed. A

logarithmic departure from optimality seems to be a reasonable compromime for the simplicity of the colnposite

grid data structure and concomitant regular data exchange patterns in a multiproce_or environment. We report
some experiments with up to 1024 tiles, comment on the evolution of the algorithm, and contrast it with optimal

nonrefining two-level algorithms and optimal refining multilevel algorithnm. Computational comparisons with some

other popular methods are presented.

17. Key Wor_ (Suggest_ by Au_or(s)]

domain decomposition, preconditioning,

Krylov methods, mesh refinement, elliptic

problems

18. D_tributmn Statement

64 - Numerical Analysis

Unclassified - Unlimited

19, Securi_ Cla_if. {of this report)

Unclassified
SecuriW Clair. (of thin pa_)

Unclassified
21 No. of pages

32
2.2. Price

A0 3

NASA FORM 1626 OCT 86
NASA-Langley, 1991




